市场前沿 | 大数据与新闻传播

2015-06-06 11:35:00
喻国明
原创
摘要:大数据方法视野下的新闻传播,首先是新闻形态的一种创新,其次也是一种全新意义上的内容创新

大数据方法视野下的新闻传播,首先是新闻形态的一种创新,其次也是一种全新意义上的内容创新


大数据新闻传播不同于传统新闻报道那样的简单数字交代,而是展示了一种从宏观与中观的层面对社会某一方面的趋势、动态和结构性的把握。大数据方法在新闻传播时间中的初级应用,是借助类似百度指数等各类数据采集和分析工具去挖掘散落在社会文本“碎片”中的具有新闻价值的资讯描述和意义表达。传统的新闻采集数据的方式更多的是通过线人、采访这种形态,而大数据方法为媒体工作者提供了一个全新的专业工具,帮助大家去挖掘新闻。

大数据方法视野下的新闻传播创新包含这样两个层次的内涵:首先,它是新闻形态的一种创新,包括可视化信息、人性化的嵌入。其次,它是一种全新意义上的内容创新,即通过碎片化的数据及文本的挖掘技术,实现了新形态的“减少和消除不确定性”的新闻内容。


大数据在新闻传播领域的实际应用

目前利用大数据资源的实际社会成效、有实际影响力的产品依然屈指可数。数据源的代表性和价值、良好的供给与需求的合作以及有广泛影响力的平台,是大数据应用获得成功的两条重要因素。

大数据可以实现一种在兴味盎然的“新闻游戏化”的参与中完成的传播读解和消费的过程。例如《华盛顿邮报》关于奥巴马就职典礼的报道,其网站中贴出了千兆像素的巨幅图片展示奥巴马宣誓就职场景,可以清晰地放大每一个局部,让每个参与者“找到”自己或自己的熟人。还有获得美国新闻奖的2013年的雪崩报道,以及阿拉伯之春立体四维报道西亚北非17国的情形,都是运用最新大数据的技术手段改革新闻报道的典型案例。

近期较为成功的大数据报道的案例,就是央视《新闻联播》在2014年春节期间播出的11集“据说”春运和春节。数据说春运和春节的成功有几大因素,其中包括新闻形式上的可视化的突破、新闻内容上的数据化和故事化的画面表达,呈现出“大数据小故事”。

大数据已经是一种客观存在。只不过相当长一段时间,人们缺少有效整合这些数据的技术和手段,并且人们对大数据的使用成本很高。互联网的OTT突破了原来的局限,解决了信息不对称的问题。其中的关键是大数据拥有方的合作与开放。“据说春运”节目的合作方的是百度公司,百度作为最大的中文搜索平台,每天要处理60 亿次相关的搜索请求,其海量的数据能够生动翔实地反映中国网民具体的需求、兴趣点,搜索者本人的个人特点,等等。实际上,百度已经可以被视为中国最大的内容提供者。


大数据方法在新闻传播创新中的难点与关键

大数据方法在新闻传播创新中的难点与关键,现阶段主要集中在大数据方法与新闻传播价值逻辑之间的矛盾,以及大数据的数据源的开放等问题。

1.大数据与新闻的价值逻辑之间的矛盾

大数据与新闻报道之间存在着几对矛盾。首先,事实之间的相关关系在新闻传播中进行因果关系的解读所构成的矛盾。大数据的核心特色是强调伴随性指标的相关关系,大数据方法甚至于公开拒绝因果关系的认识逻辑。但新闻的传统解读却是具有强烈的因果逻辑的。如果在新闻报道的呈现中不把因果关系考虑进去,不但与人们的认识逻辑相悖,而且也容易滋长解读上的随意性和偶然性,这样便使数据对于新闻报道来说失去了核心意义。其次,大数据的内在逻辑与新闻表达的逻辑在某种程度上是相悖的。因为大数据强调的是信息结构化,抛开故事中心,“去故事化”,这就和传统报道中的故事化诉求产生了矛盾。如何将结构化的数据表现出人类生活的温度和质感,是大数据在应用于新闻传播过程中的一项极为重要的课题。另外,大数据方法与新闻传播所要求的精确性之间也是存在矛盾的,新闻要讲究精确性,而大数据方法却是以模糊性的呈现和把握为特点的。

2.数据源的开放问题

在人人都在说大数据的时代,数据源的开放便非常重要了。互联网本身是由开放精神主导的。如果我们无从得到权威的数据源的话,大数据方法就是一句空话。因此,大数据时代,Google也好,百度也好,必须要有开放的心态。很多媒体在前两年打造自己的微博,看起来是一个交流的平台,但是完全忽略了一个核心原则—只有开放和实现彼此连接,才是具有真正交流价值的平台。就现实而言,有质量的大数据源常常掌握在政府及大公司手中,如何开放这种大数据源的使用,事关社会的发展和人民生活的福祉,必须从制度和机制上给予保障。在这方面,美国政府的数据开放政策不但为政府开放数据源起到了一种很好的参照作用,对于大公司所掌握的数据源的开放也有着重要的借鉴意义。如果掌握着数据的公司或政府将数据源封闭在自己的圈子里,数据的巨大社会价值和商业价值就无法实现。实践表明,对于掌握着数据源的大公司和政府而言,数据放开会使政府和公司得到的比贡献出去的更多。


大数据方法在新闻传播领域的未来发展

首先,大数据分析在方法论上需要解决的问题在于:如何透过多层次、多维度的数据集实现对于某一个人、某一件事或某一种社会状态的现实态势的聚焦,即真相再现;其中的难点就在于,我们需要洞察哪些维度是描述一个人、一件事以及一种社会状态的最为关键的维度,这些维度之间的关联方式又是怎样的,等等。其次,如何在时间序列上离散的、貌似各不相关的数据集合中,找到一种或多种与人的活动、事件的发展以及社会的运作有机联系的连续性数据的分析逻辑。其中的难点就在于,我们对于离散的、貌似各不相关数据如何进行属性标签化的分类。概言之,不同类属的数据集的功能聚合模型(用于特定的分析对象)以及数据的标签化技术,是大数据分析的技术关键。

其次,从表现角度来说,嵌入是关键词。我认为,大数据呈现的结果和结论,与人的需求、人的行为、人的认识逻辑需要有一种相适应的嵌入。尤其是在大数据刚刚进入社会生活领域的时候,一定要顺势而为,跟人的需求相关,跟人的认识行为逻辑相关,这样人们就比较容易去解读它,然后去把握它,消费它,使用它。比如,与新闻媒介相结合的时候,新闻媒介自身的传播逻辑、传播规则、传播样式,新闻媒介在传播过程的需求点上可以嵌入当中的哪些大数据的服务。这要有更多的数据专家去解读。

最后,与现有的可视化技术发展相联系。日常生活中一些重大的新闻如果能够运用大数据来报道,其深度会大大强化,也能够给人以更强的动感和说服力,并且帮助人们比较准确地把握未来。在这个意义上,大数据与新闻的结合,将是新闻竞争的巨大技术驱动力。


编者注:本文选自中国人民大学新闻学院喻国明老师的《大数据方法与新闻传播创新:从理论定义到操作路线》


发表评论
评论通过审核后显示。